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Comparison of Current-Mirror Op Amps 

with Previous Structures
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How does the Current Mirror Op Amp really  

compare with previous amplifiers or with 

reference amplifier? 

Perceived improvements may 

appear to be very significant

Actual performance is not as good in

almost every respect !

But performance is comparable to 

other circuits and the circuit structure 

is really simple

Widely used architecture as well but 

maybe more for OTA applications

Review from Last Time



• Fundamental Amplifier Design Issues

• Single-Stage Low Gain Op Amps

• Single-Stage High Gain Op  Amps

• Other Basic Gain Enhancement Approaches

– Cascaded Amplifiers

• Two-Stage Op Amp

– Compensation 

– Breaking the Loop

• Other Issues in Amplifier Design

• Summary Remarks

Amplifier Design

Where we are at: Review from Last Time



Current-Mirror Op Amps – Another 

Perspective ! 
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Differential Half-Circuit

Note:  Source node of M1 and M2 at ac ground with differential excitations

Review from Last Time



Stability
• Sometimes circuits that have been designed to operate as amplifiers 

do not amplify a signal but rather oscillate when no input signal is 
present (Vin=0V or Iin=0A) or “latch up”

• Circuits that are designed to operate as amplifiers  but instead either  
oscillate or “latch up” are said to be unstable

• The stability of any circuit is determined by the location of the poles

• We will discuss stability with more rigor later

• It will be shown that if the poles of an open-loop amplifier are widely 
separated on the negative real axis, then the feedback amplifier built 
using the open-loop amplifier will be stable

• And, it will be shown that if the poles of an open-loop amplifier are 
not widely separated on the negative real axis, then the feedback 
amplifier built using the open-loop amplifier will be unstable

Review from Last Time



Poles of an Amplifier

• The poles of an amplifier are the roots of the 

denominator of the transfer function

• Each energy storage element (capacitor or 

inductor) introduces an additional pole (except when 

capacitor or inductor loops exist)

• The poles of an amplifier can often be 

approximated by independently considering the 

impedance facing each capacitor and assuming 

all other capacitors are either open circuits or 

short circuits

Review from Last Time



Poles of an Amplifier

• The dead network of a circuit is obtained by setting all 

independent sources to zero

• The poles of a circuit are absolute:   That is, they are 

independent of where the excitation is applied or where 

the response is taken provided the dead networks are 

the same!

• Stability is absolute:  That is, a circuit is either stable or 

unstable irrespective of where the input is applied or the 

response is taken provided the dead networks are the 

same 

Review from Last Time



Increasing Gain by Cascading
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Provided the stages are non-interacting

Gain can be easily 

increased to almost 

any desired level !
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Increasing Gain by Cascading
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•  Much larger gain

•  Much larger GB

•  Much steeper gain transition

•  Much more phase shift

Assume for case of an example that all stages are identical with A0k=A0 and pppk −== ~~

(if inverting gain, phase will decrease from -180o to -270o)

Review from Last Time



Review of Basic Concepts

If
D(s)

N(s)
T(s) = is the transfer function of a linear system

T(s)
XIN XOUT

Definition:   A linear system is BIBO  stable if for any bounded input, the 

output is also bounded

Stability

BIBO:  Bounded-Input  Bounded-Output

• The term “stable” and the term “BIBO stable” are used interchangeably

• The amplifier community and the linear analog circuits community invariably 

use the term “stable”

• Slight variants of the definition of stability are common but for this course minor 

nuances in the definition of stability are of no concern and the concepts are 

identical and inherent

Review from Last Lecture



Review from Last Lecture

If
D(s)

N(s)
T(s) = is the transfer function of a linear system

T(s)
XIN XOUT

Roots of N(s) are termed the zeros

Roots of D(s) are termed the poles

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

• If a circuit is unstable, the output will either diverge to infinity or oscillate 

     even if the input is set to 0

• A FB amplifier circuit that is not stable is not a useful “stand alone” FB amplifier

• A FB amplifier circuit that is “close” to becoming unstable is not a useful “stand 

alone” amplifier

• An amplifier circuit that exhibits excessive ringing or gain peaking is not a useful 

“stand alone” amplifier



Review of Basic Concepts

D(s)

N(s)
T(s) =T(s)

XIN XOUT

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Plausibility argument for theorem:

For any input to a linear system, the response in the s-domain can be written as
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where the terms    are the negative of the poles of T(s), the terms      are the 

negative of the roots of the denominator of the excitation and the terms ak 

and bk are the partial fraction expansion coefficients of XOUT(s)

kp~
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If      is the negative of any pole, then     can be expressed as  kp
kp~

k kjk kp  = -p  = +

where αk is the real part of the pole and βk is the imaginary part of the pole



Review of Basic Concepts

D(s)

N(s)
T(s) =T(s)

XIN XOUT

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

It thus follows that 
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Thus, for the output to be bounded for ANY bounded input, must have ALL 0αk 

That is equivalent to saying all poles must lie in the left half-plane

If a pole is in the RHP, output for any input (even very small noise) will grow 

to infinity (as long as linear operation is maintained).  If the corresponding 

βk=0, output will latch up.  If corresponding βk ≠ 0, output will be a growing 

sinusoid  (recall Euler’s identity                             ).

Plausibility argument for theorem:

cos sinjxe x j x= +



Review of Basic Concepts

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Im

Re

Open Left Half Plane
Im

Re

Open Left Half Plane

Stable with two negative

real axis poles, two LHP 

complex conjugate poles, and 

two LHP CC poles

Unstable with positive real 

axis pole



Review of Basic Concepts

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Im

Re

Open Left Half Plane Im

Re

Open Left Half Plane

Stable with negative real axis poles Unstable with cc RHP poles



Review of Basic Concepts

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Im

Re

Open Left Half Plane

Stable with negative real-axis poles and RHP zero

System zero locations of have no impact on stability



Review of Basic Concepts

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Im

Re

Open Left Half Plane

Close to becoming unstable since poles are close (in 

angular sense) to the RHP



Review of Basic Concepts

D(s)

N(s)
T(s) =T(s)

XIN XOUT

Theorem:   A linear system is stable iff all poles lie in the open left half-plane
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If a pole is in the RHP (i.e.              ) output for any input (even very small 

noise) will grow to infinity (as long as linear operation is maintained).  If the 

corresponding βk=0, output will latch up.  If corresponding βk ≠ 0, output will 

be a growing sinusoid

What are the practical implications of instability and “close to becoming unstable” ?

If a pole off the real axis is close to the imaginary axis (i.e. “close to 

becoming unstable”) , the output envelope defined by          for any input will 

decay very slowly (“ring”)

k te

kα 0



Consider Again the Frequency Response of a Feedback Amplifier with 

identical gain stages 
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Routh-Hurwitz Stability Criteria:

A third-order polynomial s3+a2s
2+a1s+a0  has all poles in 

the LHP iff all coefficients are positive and  a1a2>a0

• Very useful in amplifier and filter design

• Can easily determine if poles in LHP without finding poles

• But tells little about how far in LHP poles may be

• RH exists for higher-order polynomials as well 



Consider Again the Frequency Response of Feedback Amplifier 

A

β

X
IN

X
OUTX

1

Example:  If n=3 and stages are identical 
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Routh-Hurwitz Stability Criteria:

A third-order polynomial s3+a2s
2+a1s+a0  has all poles in the LHP iff all 

coefficients are positive and  a1a2>a0
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Example:

Assume an amplifier has a transfer function that has a denominator 

polynomial that can be expressed as 

  D(s)=s3+2ks2+4s+16

Determine the minimum value of k that will result in a stable amplifier 



Solution:

Assume an amplifier has a transfer function that has a denominator 

polynomial that can be expressed as 

  D(s)=s3+2ks2+4s+16

Determine the minimum value of k that will result in a stable amplifier 

Solution:   Recall from the RH criteria that all roots of a third-order polynomial

of the form s3+a2s
2+a1s+a0 will lie in the LHP provided all coefficients are 

positive and  a1a2 > a0

Thus, for the current problem, must have

                        (2k)4 >16

or

  k>2



Consider Again the Frequency Response of the basic Feedback Amplifier 
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Consider Again the Frequency Response of Feedback Amplifier 
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Example:  If n=3 and stages are not identical (cont) 

Routh-Hurwitz Stability Criteria:
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Consider Again the Frequency Response of Feedback Amplifier (cont)
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Example:  If n=3 and stages are not identical 

RH criteria: 

( )( ) 0 TO T323232 β Akkkkkk1 ++++

Since A0TOT will, in general, be very large for the cascade of 3 stages, a very 

large pole ratio is required just to maintain stability and an even larger ratio 

needed to avoid a close to becoming unstable situation

Practically it is difficult to obtain such a large spread in the bandwidth of the 

amplifiers

For many years there was limited commercial use of the cascade of three 

amplifiers (each with gain)  in the design of op amps though some academic 

groups have worked on this approach with minimal practical success

Problem can be viewed as one of accumulating too much phase shift before 

gain drops to an acceptable value

In recent years, industry is looking at ways to “compensate” amplifiers to work 

with 3 (or more) high gain stages due to low headroom and shrinking gm/go ratios
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Similar implications on amplifier even if not a basic 

voltage feedback amplifier
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Similar implications on amplifier even if not a basic 

voltage feedback amplifier
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These circuits have

• same β

• same dead network

• same characteristic polynomial

• same poles

• different numerators in AVF (different zeros for some AV)

( )D s =1+Aβ (expressed as polynomial)

Thus same stability issues !



Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if
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Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if
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Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if
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Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if
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In integer-monic form:
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Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if
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Cascaded Amplifier Issues

Three amplifier cascades  -  for ideally identical stages 3

0βA8 

Four or more amplifier cascades  -  problems even larger than for three stages 

--  seldom used in industry though some recent products use this method !

--  invariably modify A

--  seldom used in industry !

0 A  p
A

s p
=

+
k

For identical  first-order lowpass stage gains  
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Consider Again the Frequency Response of Feedback Amplifier 
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For two-stage cascade, i.e.  n=2 

Note this amplifier is stable !!!!

(at least based upon this analysis) 

If we assume 1212 pkp     express thus and  pp ~~~~ =

AFB(s) is a second-order lowpass function !
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Two-stage Cascade (continued)  

Consider special case of identical stages (i.e. k=1)  
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thus the poles of the feedback amplifier are located at

Re

Im

•  FB poles are very close to the imaginary axis

•  Very highly under-damped

•  Not useful as a stand alone amplifier (excessive ringing)

•  Other poles (not considered here) will make it unstable
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Two-stage Cascade (continued)  
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Assume β is fixed



Review of Basic Concepts
Consider a second-order factor of a denominator polynomial, P(s), 

expressed in integer-monic form

                                 P(s)=s2+a1s+a0

Then P(s) can be expressed in several alternative but equivalent ways
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These are all 2-paramater characterizations of the second-order factor

and it is easy to map from any one characterization to any other

{ (a1,a2)  (ω0,Q)   (ω0,ζ)   (p1,p2)  (p1,k)   (α, β)  (r, θ) }

Widely used alternate parameter sets:



Review of Basic Concepts

2

0
02 ω

Q

ω
ss ++

Re

Im

oω



1
sinθ

2Q
=

ωo = magnitude of pole

Q determines the angle of the pole

( ) ( )2 2

1 1 0TOTs sp 1 k kp 1 βA+ + + +

Observe:     Q=0.5 corresponds to two identical real-axis poles

                    Q=.707 corresponds to poles making 45o angle with Im axis



Two-stage Cascade (continued)  
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Feedback pole locus

2 20
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Alternate notation for DFB(s)
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0 1 0TOT 1 0TOT

0
1

p k 1 βA p kβA

p 1 k
Q

 = + 


= +

2 2

FB 0 0D (s) s s2= +  + 

( ) 0TOT

k 1
Q βA

1 k 2Q
=  =

+

or

Thus it follows that 

Assume β is fixed



Two-stage Cascade (continued)  
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Feedback pole locus
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Alternate notation for DFB(s)

Re

Im

0

2Q



ω0

1
sin

2Q
 = = 

It  was previously  shown that 

Thus, the angle of a complex-conjugate pole is completely 

determined by the  pole Q  (or by ξ)

• When designing amplifiers, it is critical to appropriately manage the pole Q  

( ) 0TOT

k
Q βA

1 k
=

+
• Since for two-stage cascade must have large pole spread

• A(s) is often (but not always) all poles



Magnitude Response of 2nd-order all-pole (Low-pass) Function

From Laker-Sansen Textk

Maximally Flat Magnitude  

Response -no overshoot

k < 2 βA0

k > 2βA0

k=2βA0

1

2
Q


=

1

2
Q =

For two-stage all-pole amplifiers, must have open-loop pole spread, k, 

very large to avoid overshoot in closed-loop gain



Step Response of 2nd-order all-pole (Low-pass)  Function

QMAX for no overshoot = 1/2 From Laker-Sansen Text

Maximally Fast Step 

Response -no ringing

k < 4βA0

k > 4 βA0

k=4 βA0
1

2
Q =

For two-stage amplifiers, must have open-loop pole spread, k, very large 

to avoid ringing in step response

1

2
Q


=



Two-stage Cascade second-order (continued)  
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Alternate notation for DFB(s)
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Assume β is fixed

Typically design open loop amplifier so 
1 1

Q
2 2
 

Because

 if               overshoot and ringing unacceptable 
1

Q
2



If              rise time too slow and closed-loop BW is reduced
1

Q
2





Two-stage Cascade second-order (continued)  
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Feedback pole locus
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1
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Assume β is fixed

Typically design open loop amplifier so 
1 1

Q
2 2
 

So, what is the open-loop pole spread?

( )
0TOT

0TOT
k large

βAk
Q βA

1 k k
=

+

0TOT

2

βA
k

Q
=

0TOT 0TOT4βA k 2βA 

Thus, it follows amplifiers are usually designed so that



Stay Safe and Stay Healthy !



End of Lecture 12
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